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We show that an optically active two-magnon bound state exists for fcc Heisenberg ferromag-

nets.

There is a repulsive interaction between magnons with equal and opposite wave vectors
near the zone edge which in most lattices does not lead to any dramatic effects.

However, in

the fcc lattice there is a logarithmic divergence in the density of states at the zone boundary,
which causes a bound state to split off from above the band. We discuss the possibility of ob~
serving such a state experimentally by Raman scattering, possibly in EuO.

1. INTRODUCTION

In 1963, Wortis' calculated the two-magnon states
for the linear chain, quadratic layer, and simple-
cubic lattices. He found that as well as a continu-
um of states, bound states could be formed below
the continuum. These bound states exist even for
small wave vectors and low energies in one and
two dimensions, and indeed one- and two-dimen-
sional Heisenberg ferromagnets do not order in
the usual sense.? However, in the simple-cubic
structure, these bound states only exist near the
zone boundary, where they have a minimal effect
on the low-temperature thermodynamics, and
would be difficult to observe experimentally.

We have repeated the calculation of Wortis but for
the fcc structure. The fcc ferromagnet has a log-
arithmic divergence in the density of one-magnon
states at the highest magnon energy (this is in con-
trast to the sc and bcce ferromagnets which have a
finite density of states everywhere), and this di-
vergence means that the weak repulsive force be-
tween magnons can split off a bound state above
the two-magnon band that will be optically active.
This AM=2 process should be observable in a
Raman-scattering experiment.

We describe in Sec. II how the coupling to the
two-magnon states might take place in the rare-
earth compounds with particular reference to Eu®*,
In Sec. III we develop the theory, and apply it to
the sc lattice in Sec. IV, and the fcc lattice in
Sec. V, where it is shown that the bound state would
be difficult to observe in EuO because of the large
spin value of the Eu®* ion (S=§). Nevertheless, the
Raman cross section shows some interesting struc-
ture within the band that should be observable ex-
perimentally.

II. LIGHT SCATTERING IN FERROMAGNETS

In the past few years, light scattering has been
shown to be a useful probe of the properties of anti-
ferromagnets, especially the iron-group fluorides.?
The single-magnon excitation (AM=1) is seen
through the spin-orbit coupling, whereas the two-
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magnon band (AM=0), which consists of one mag-
non from either branch, is seen through the ex-
change coupling of pairs of neighboring magnetic
jons in excited states. This exchange is of the
Heisenberg form in many of the transition-metal
compounds which have quenched angular momen-
tum in the ground state, and so conserves the total
value of the spin and only permits AM=0 processes.

The two-magnon excitations in ferromagnets are
AM=2 excitations. In a recent paper, Moriya*
has suggested that these processes could be seen
in the rare-earth metals either by use of the spin-
orbit coupling or through the s-f exchange interac-
tions. This spin-orbit coupling mechanism (which
was first proposed by Elliott and Loudon® for in-
sulators) will clearly have comparable magnitude
in the rare-earth compounds, as it is a single-
site mechanism that depends primarily on the 4f
electrons.

To illustrate this mechanism, we look at EuO.
The ground state of the Eu® ion is an %S state, and
we can assume that the effects of the crystal field
are small enough so that the Eu** ion can be con-
sidered to be spherically symmetric. The electric
dipole operator of the incident radiation can pro-
mote a 4f electron to either a 5d or 5g state. The
spin-orbit coupling then acts twice in the excited
configuration, and the electron returns to the 4f
shell via the electric dipole operator of the scat-
tered radiation. In fourth-order perturbation
theory, we can get an effective interaction in the
ground state that contains two spin operators (the
orbital matrix elements having been taken). The
size of the interaction will depend on the details
of the state involved, but the form is determined
by symmetry. The effective Hamiltonian for Raman
scattering will contain all the invariant combinations
of the incident electric field }_fl, the scattered elec-
tric field -fz, and the spin operator § twice:

(B, Ey) - 8)=(E;- E»)s(s+1),
(B, xE,)- @xS)=i(E,xE,)- 5,
& 5 E- 9 .
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In particular, the third combination will give rise
to AM=2 processes, i.e., two-magnon excitations,
and we may write an effective Hamiltonian that de-
scribes the excitation of these magnons within the
ground state of the system:
Hyge=A23, (E{E3S;S; + EJE;S;S}) . (2.1)
III. THEORY

We consider a ferromagnet described by a Hamil-

tonian

=—%E J®)S;- S, (3.1)
1,6

where the exchange J(5) only acts between the z

nearest neighbors whose separation is described
by a vector 5. The components of the spin obey

the usual commutation relations

[s* s ]=25%, [S% S*t]=xS*. (3.2)
We define a Green’s function at zero temperature,
Gas' = <<A;; Ab' >>

-5 <<01A§|i><i1A5. 10) (OlAg I4) (ilAJlO))

i w=—-E;+E, w+E; -E,

(3.3)

where A;=7,;5;Si.s. The second term in (3. 3) is
actually zero, because |0 ) is the fully aligned
state in which all the spins point in the z direction;
however, we shall retain it for convenience. We
can see from (2. 1) and using Fermi’s golden rule
that the cross section for Raman scattering will be
proportional to

AY[(ESP + (P [(ES)? + (E3)?] ImGyq . (3.4)

The Green’s function obeys the equation of motion

0)+([ A}, H];Ag )

wGep = <0| (A, Ay ] (3.5)

If we allow the S operators that result from evalu-
ating [A}, H] to operate on the ground state to the
left, so that (01Sj=(0!S, we obtain a closed set of
equations for Ggg

WGy = N(2S)3(85, 5 +05, 50 )[1 = (55,0/25)]
+282, J(x)Gyy — 2822, J(x = 6)Ggr
= J(8)Gogr +20, J(x)G5B5,9 . (3.6)

The last two terms on the right-hand side represent
interactions between the spin waves as does the
85,0/2S term that comes from the commutator in
the inhomogeneous term in (3.5). Equation (3. 6)
can be solved by standard techniques; first the in-
teraction terms are dropped, and the resulting
equation is solved by a Fourier transform. When

1609

the interaction terms are included, the equation is
of the Dyson form. This can be solved for the
various Gy because the interactions are of short
range in real space. In particular, we are inter-
ested in Gy, which is given by

S, (1 . ) (gw (1/2S)gm> ,

1+ (w/2S)gsg 3.7

where

(3.8)
1 ik 8
gso=g06=ﬁ§m .

The spin-wave energies w; are given by

wg=S[J(0) - J(&)] , (3.9)
where J(&)=3,J(5)e'¥* 8. The crystal Green’s func-
tions gy and g are not independent but connected
by the relationship

1 =1N Zk) %T_—‘;i;? (@ = 2J52) ggo + 2JS2g45 - (3.10)
The energy denominator in (3.7) is the same as
that given by Wortis® and by Silberglitt and Harris®
for the two spin-wave states with center-of-mass
wave vector zero (i.e., the two spin waves have
wave vectors +K and -k, respectively). The num-
erator in (3.7) depends upon the particular way in
which the coupling to the two-magnon states takes
place, and is determined by (2.1) in this case.
For large spin Gyy gg9, and the poles of Gy, coin-
cide with the poles of gy, i.e., the spin-wave en-
ergies. For finite spin, new poles may occur be-
cause of the denominator in (3. 7) vanishing, and
we shall see that this happens in the fcc lattice.

The cross section is proportional to the imaginary
part of Gy. By expanding the right-hand side of
(3.7) in powers of 1/w, it is easy to show that

G 1\1 1\ 275z
G _fp_1\1, (;_1
ANS? <1 28>w+<1 2s> o T

and therefore the total integrated cross section is

/G 1
200 = —

and the first moment,

[wlm<-4—%%$>wdw /-/()‘wlrn<z—irn§§>dw=2JSz .

(3.12)

Thus, whereas the first moment is unaffected by
the interaction, the total intensity is reduced by a
factor (1-1/28S).

(3.11)
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Another feature of (3.7) that is useful in check-
ing numerical calculations is that, when w=2JSz,

Im <Z%ﬂ§5> =[<1 —21—S> / (1 +21—S>] Imgy .  (3.13)

IV. SIMPLE-CUBIC LATTICE

Wortis' showed that no bound states exist for zerc
wave vector in the sc lattice, and we calculate the
spectral weight function merely for comparison with
the fcc lattice. If the separation between nearest
neighbors is a, the spin-wave energies (3. 9) be-
come

wg = 6JS[1 - 3(cosk,a + coskya+cosk,a)] ,

and the crystal Green’s function gy, in (3. 8) may be
written

&oo(w)=(=1/4J8) I, [3(1 - w/12J5)] ,

where the integrals
)

ANEN
se 21/ € — COSX +COSY + COSZ

have been evaluated numerically by Wolfram and
Callaway.”

The spin-wave band stretches from 0- 12JS, and
so the two spin-wave band goes from 0-~ 24JS. In
Fig. 1, we plot the Raman intensity Im(Gyy/4NS?)
against w. The S== case corresponds to no inter-
action, when we just get the single spin-wave den-
sity of states stretched over twice the frequency
scale. The interactions introduce an asymmetry
into the spectrum, but no bound states are produced,
as the sum rule (3. 11) is satisfied by the band
modes. Note that the interaction has a very small
effect at low energies, as can be seen in both Figs.
1 and 2. This is a consequence of the result first
obtained by Dyson® that long-wavelength magnons
only interact weakly.

V. FACE-CENTERED-CUBIC LATTICE

The spin-wave dispersion (3. 9) in an fcc lattice becomes

wg =12J5[1 - 3(cosk,a cosk,a + coskya cosk,a +cosk,a cosk,a)] ,

where 2a is the size of the unit cube so that the distance between nearest neighbors is v2a. The crystal

Green’s function Gy, in (3.8) may be written

Zoolw) = (= 1/8J8) I ..[3(1 - w/24JS)] ,

where the integrals
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FIG. 2. Raman intensity for an fcc
ferromagnet for S= (no interactions),
=§, and S=1. Position of the bound
state is shown for S=1 but is too near

the band edge to be shown for S =-§'.
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Licol€) ( ) /ff € — (cosx cosy + coSy COSZ + COSZ COSY)

have been tabulated by Frikkee.’

The single spin-wave energies go from 0 - 16JS,
and so the two spin-wave band goes from 0- 32JS.
The integral I,..(¢) is defined over a cubic zone
(which has a volume of twice the Brillouin zone).
This is convenient and introduces no error, as
everything is counted exactly twice in the integral
and a factor of 2 introduced to correct for the over-
counting. When w =32JS (i.e., the top of the band),
€=-1, and the integrand in (5. 1) is degenerate
along lines such as (x, 0, 7) in reciprocal space.
This leads to a logarithmic divergence in the den-
sity of states [which is proportional to ImI,(¢)]
at e=-1. The precise form of this divergence may
be calculated by constructing a surface around,
and close to, the degenerate lines in reciprocal
space, calculating the volume enclosed by this
surface, and hence, by differentiation, obtaining
the density of states. We find that

Iml,cc(e)'*; [l"g—-g 3 m(—lf—‘)] +0(1+¢) .

4
(5.2)

We have used this asymptotic form to calculate
Iml . (€) close to the zone boundary, and the numer-
ical results are given in the Appendix. These re-
sults join smoothly onto the computer calculations
of Frikkee who does not attempt to get very close

to the zone edge. The real part of I,..(¢) was

(5.1)
r
evaluated using the Kramers-Kronig relation
ReIm(s)—— f 1 ——m——d‘ Imle(€) (5.3)

and integrating numerically. The real part diverges
both above and below the zone boundary, this di-
vergence being caused by the logarithmic diver-
gence in the density of states, so that great care had
to be taken with the integral (5.3). Frikkee’s val-
ues for ImlI, . (¢) were used up to € =—0.96, and

the asymptotic form (5. 2) was used between
€=-0.96 and € =-1. The results for the real part
near the zone boundary are also given in the Appen-
dix.

In Fig. 2, we plot the Raman intensity Im(G,,/
4NS?) against w. The S=« case (no interaction)
shows the divergent density of states at w = 32J8S.
When the interaction is included, the intensity
drops to zero at the zone boundary. However, in
this case, the sum rule (3.11) is not satisfied by
the band modes, which means that a bound state
must be split off above the band. We find that this
is indeed the case as the energy denominator in
(3. 7) vanishes for a certain w > 32JS. The position
of the bound state is shown in Fig. 2 for S=1, but
is too close to the band edge to be shown for S=%
Figure 3 shows the position of the bound state for
S=1 up to S=7F and also the weight in the bound
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FIG. 3. Left-hand scale refers to the triangles which

give the ratio of the splitting of the bound state from the
top of the band (Aw,) to the bandwidth (32JS). Right-hand
scale refers to the circles which give the ratio of the
weight in the bound state to the weight in the band.

state. We have verified numerically that the total
weight satisfies the sum rule (3.11). We see from
Fig. 3 that the spin-1 bound state is well split off
from the band and contains considerable weight,
whereas for spin % it is only just split off and con-
tains very little weight. In this case, however, the
band intensity is correspondingly more peaked near
the zone boundary. We note that for S=%, Aw,/
32JS=0.052, where Aw, is the distance of the bound
state from the top of the band. However, the inten-

sity is zero everywhere, as two spin deviations can-

not exist on the same site for S=1%.

The rare-earth ferromagnet EuO has the fcc
structure and a Curie temperature of 69. 3 °K.%°
If we assume that the exchange is entirely nearest
neighbor, we can use the formula of Rushbrooke
and Wood! (with z=12 and S=71) for the transition
temperature to determine J. Hence, the top of the
two spin-wave band (32JS for EuO) would be at 109
cm™, Unfortunately, the bound state is only split
off from the band by 0. 05 cm™, which would make
it almost impossible to resolve with current Raman
apparatus. This small splitting occurs because
the interaction is a 1/S effect and S is large in this
case. We see from (3. 4) that the scattered inten-
sity will depend upon the angles that E, and E, make
with the axis of spin alignment (the z axis). How-
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ever, in a multidomain sample, the scattered in-
tensity will be independent of the directions of EI
and ﬁa.

It is, of course, very possible that exchange con-
stants other than nearest neighbor are important
in EuO.'®» ' 1t is difficult to get an unambiguous
determination of the exchange parameters at the
present time, as the spin-wave spectrum has not
been measured by inelastic neutron scattering. Ex-
change interactions other than nearest neighbor
will remove the degeneracy in reciprocal space that
leads to the divergence in the density of states and,
hence, may have a severe effect on the bound state.

The existence of a bound state with zero center-
of-mass wave vector is perfectly consistent with
Dyson’s calculation® of the low-temperature thermo-
dynamics of a ferromagnet as it occurs at a rather
high energy, and it will not be populated at low tem-
peratures. The low-temperature behavior of an
fcc ferromagnet is no different from that of any
other three-dimensional ferromagnet.

VL. CONCLUSIONS

We have shown that a bound state exists with cen-
ter-of-mass momentum zero in fcc ferromagnets.

TABLE I. Real and imaginary parts of the Green’s
function (5. 1) for the fcc lattice for energies € near the
zone edge.

€ Imlyo, (€) Relg. (€)
-0.90 2.500 -1.209
-0.91 2.550 -1,294
-0.92 2.606 -1.391
-0.93 2.670 —-1.503
-0.94 2.747 —1.636
—-0.95 2.831 —-1.817
—0.96 2.937 -2,002
-0.97 3.074 —-2.278
—-0.98 3.268 —2.687
-0.99 3.599 —3.444
—1.001 —-17.235
- 1.002 —6.235
—1.003 —5.684
-1.004 —5.308
—1.005 -5.025
—1.006 —4.792
—-1.007 —-4.613
-1.008 —~4,454
—1.009 —4.316
-1.01 —-4,194
-1.02 —3.437
—-1.03 -3.028
-1.04 —-2.752
—-1.05 —-2.567
~1.06 —~2.386
-1.07 —2,252
—-1.08 —-2.141
-1.09 —-2,044
~1.10 —1.960
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This is in sharp contrast to the sc and bcc ferro-
magnets where no such state exists. It would be
interesting to investigate the behavior of this bound
state for an arbitrary wave vector.

It is interesting to compare the present calcula-
tion of the two-magnon optical spectrum with a
similar calculation in a Heisenberg antiferromag-
net.!* In that case, the attractive interactions
caused a resonant peak to develop just below the
top of the band. The position of this peak was
rather insensitive to the crystal structure and de-
termined by a square-root divergence in the density
of states at the zone boundary. This divergence
occured as a result of the form of the antiferromag-
netic spin waves rather than the structure of the
lattice. By contrast, in the present case, we find
that the repulsive force may lead to a bound state,
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but the geometry of the lattice is a very important
aspect.
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APPENDIX

The Green’s function I,.(¢) is calculated near to
the zone boundary. The imaginary part is obtained
from (5. 2) and the real part from the Kramers-
Kronig relation (5. 3) using the computations of
Frikkee® for ImI,.(¢) for —0.96< ¢ <3 and the
asymptotic form (5.2) for —~1<e<-0.96. We esti-
mate that, due to the difficulties of the numerical
integration, the real part is correct to about 5%.
See Table 1.
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The high-temperature series expansions for the spin-4 Heisenberg ferromagnetic model on
cubic lattices are analyzed by a transformation method. Evidence is presented suggesting
that the susceptibility critical exponent (y) and the gap parameter (2A) are both smaller than
the original estimates obtained by Padé approximant techniques. Specifically, we find that
v=1.36+0.04 and 2A=3.50+0.20. The error limits are to be taken as a reasonable confidence

level rather than as a strict bound.

I. INTRODUCTION

Critical properties of all realistic three-dimen-
sional models of magnetism are determined by the
method of exact series expansions. It is generally
accepted that critical values of the Ising model are,
on the whole, reliably established.! Critical values
of other models, such as the spin-4 XY model? and

the spin- Heisenberg model, ® have been deter-
mined only recently and with an uncertainty general-
ly greater than in the Ising counterparts. In these
extreme quantum models, the noncommutativity of
spin operators complicates the evaluation of expan-
sion coefficients enormously; moreover, there is
an irregularity in the resulting series, apparently
related to the noncommutativity in some way not yet



